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A generalized approach to the structure count of n-radical-m-cation systems 
based on the properties of  the acyclic polynomial  is presented. The mathemati-  
cal p roof  for the expression relating the structure count to the coefficients of  
the acyclic polynomial  is given. The connection between the structure count 
of biradical structures and the number  of  Dewar structures is discussed and 
tested on some examples. 
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1. Introduction 

Kekul6 structures have found an important role in chemistry [1, 2], particularly 
for quick characterization of conjugated systems within the framework of qualita- 
tive valence bond theory (resonance theory) [3-6]. 

The interest in Kekul6 structures and resonance theory has been revived after 
Wilcox introduced the concept of  algebraic structure count, ASC [7]. Later, 
Herndon [8] independently introduced this concept and named it the corrected 
structure count. In proposing the concept of  ASC Wilcox utilized the concept of  
parity of  Kekul6 structures [9]. Wilcox has shown that for polycyclic conjugated 
systems containing 4 N  rings ( N = n u m b e r  of  7r-centers) the total number  of 
Kekul6 structures K ( G )  of structure G (also called the structure count SC(G)  
of  structure G) [8] must be replaced by the difference between even (K +) and 
odd ( K - )  Kekul6 structures: ASC( G) = K +-  K-;  K + >  K - .  The structure count 
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is then, of  course, given by K ( G ) =  S C ( G ) =  K + + K  -. The A S C  was used for 
predicting relative stabilities and reactivities of isomeric conjugated molecules 
[10]. 

In recent years, Kekul6 structures became widely used in the structure-resonance 
theory [8], the conjugated circuits model [11, 12], the method of significant 
electron structures [13, 14], the molecular orbital resonance theory [15], and the 
valence bond resonance energy approach [16]. 

However, Kekul6 structures form just a special subset from the set of structures 
which can be generally named as n-radical-m-cation structures. Such a set would 
encompass, e.g. all the possible different structures of cyclopentadienyl radical: 

�9 
or all radical-cation structures of acepentylene: 

.& 
Formally, while Kekul~ structures are generated graphically by spanning the 
o-skeleton of a molecule with the appropriate number of double bonds, n-radical- 
m-cation structures are formed by spanning the o-skeleton with n unpaired 
~r-electrons and m positive charges (i.e. ionized F-electrons) balanced by the 
pertinent number of double bonds. Therefore, a Kekul~ structure can be con- 
sidered as an n-radical-m-cation structure where both n and m are equal to zero. 
Furthermore, monoradical structures ( n = l ,  m = 0 )  are to an odd-membered 
o-skeleton (as in 1) the same as Kekul~ structures to an even-membered o-skeleton 
(e.g. benzene). 

The present paper deals with the issue of enumerating n-radical-m-cation struc- 
tures. The simplest approach is to manually draw all the distinct structures and 
count them [17], a procedure which becomes quite laborious and inconvenient 
even if a o-skeleton of moderate complexity is considered. A better approach is 
to deal with the problem from the topological (or more correctly, from the graph 
theoretical) point of view [8, 18-20]. 

2. Mathematical approach 

Let a HiJckel graph [21] G (i.e. a connected graph whose vertice s vi ~ V(G)  have 
degrees d(vi) c {1, 2, 3}, i = 1, 2 , . . . ,  N, where N = ]G]) represent the o-skeleton 
of the parent conjugated molecule. 

Note, that the concept of  Hiickel graphs embraces all graphs representing conju- 
gated molecules irrespective of the number of ~r-electrons they contain. Further- 
more, the approach that we will describe can be applied to graphs outside of the 
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class o f  Hiickel graphs which in general do  not  necessarily need to be chemical 
graphs either. 

Let G(n, m) represent an n-radical-m-cat ion structure of  the parent  molecule. 
By G(n, m) we unders tand the parti t ion o f  G into three subgraphs G1, G2, G3, 
where G~ are acyclic Sachs graphs [22] (i.e. graphs whose only components  are 
K2) SN . . . .  ~ S~_,_,, on N - n - m vertices, while G2 and G 3 a r e  discrete graphs 
(i.e. graphs with the set o f  edges E(G) = 0 )  such that 1621 = n and IG31 = m (see 
Fig. 1). 

Because o f  

V(G,)u V(Q)u V(G~) : V(G) (1) 

k = n + m and I G[ = N are necessarily o f  the same parity (i.e. both  are odd or 
both  are even), otherwise there will exist a vertex v ~ V(G) such that 

V(Ga) k3 V(G2) u V(G3) = V(G) \{v}  (2) 

The fol lowing proposi t ion  gives the relationship between the number  o f  distinct 
structures G(n, m) (called the structure count  [8] o f  G(n, m) or SC[G(n, m)]) 
and the coefficients a ~ _ , _ , ,  o f  the acyclic polynomial  [23, 24] Pat(G; x) 

N 

P"~(G; x)= Y, ~ l aN-iX (3) 
I - 0  

Proposition. I f  G is a graph on N vertices 

SC[G(n, m ) ] = ( n : m ) l a  ~ .-m[ (4) 

Proof It is enough  to realize that la~-.-r.I is the number  o f  all acyclic Sachs 
graphs on N -  k vertices (i.e. the cardinali ty o f  the set S~-k), where N -  k is 
always even and k = n + m. Therefore,  a ~  . . . .  enumerates  all possible subgraphs 
GI o f  graph  G which satisfy the condi t ion IGl[ = N -  n - m. How, for  each G1, 

S ~ a r  represented by N- , -m C ~ N - , - m ,  there is a set of  G(n, m) structures which differ 
only in the way  the remaining k = n + m vertices are part i t ioned into G2 and G3. 
There are exactly (k) ways o f  part i t ioning k vertices into discrete graphs G2 and 
G3 such that  the condit ions 1621 = k -  m and I G31 = m hold. 

Comments. (i) Note  the proper ty  

SC[G(n, m)] = SC[G(m, n)] (5) 

G (3,1) G1 G2 C~ 
Fig. 1. The partition of a particular n-radical-m-cation structure G(n, m) of graph G into subgraphs 
G1, G2, and G 3. G 1 is an acyclic Sachs graph on N-n-m vertices, while G 2 and G 3 are discrete graphs 
on n and m vertices, respectively 
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because of 

(n+mm) = ( n ; m )  

This is the same as saying that the number of n-radical-m-cation structures is 
equal to the number of m-radical-n-cation structures for a given o--skeleton, 
which is certainly true. 

(ii) When we put n = 0 ,  m = 0 ;  n = l ,  m = l ;  and n = 2 ,  m = 0  or n = 0 ,  m = 2 ,  
the structure counts reduce to 

SC[G(O, 0)] = la~l = IK(G)I 

SC[G(1, 1)] = 2[a~-21 (6) 

SC[G(2, 0)] = SC[G(O, 2)3 = [a~-d 

K(G) denotes the Kekul6 structures. Note that if N is odd then a~ ,  a~_2 = 0 

(iii) Supposing that I G31 = m = 0, the set S~-2 can be split into two subsets such 
that 

S~_2=K(G) uD(G) 
D(G)  = {sN-2 ~ S~_21 V(G2) non-adjacent} (7) 

R (G) = {sN-2 ~ S~-21 V(G2) adjacent} 

where D(G) symbolizes the Dewar structures (an additional edge between the 
two vertices of G2 is usually added and denominated as a "long bond"). We 
have immediately 

[a~-21 = ]S~-d - - Ig (G) I  + ID(G)I (8) 

Since 

[K(G)[ = N I K ( G )  I (9) 

we obtain 

la~-=l = NIK(O)I  + IO(O)l (10) 

which can be written as 

ID(G)I = l a ~ - 2 l - N l a ~ ]  (11) 

and 

SC[G(1, 1 ) ] = 2 .  (N,K(G),+,D(G),I (12) 



On the generalized approach to the structure count 111 

so that we have proven formula (5) from [25] enumerating radical-cations of  
graph G. Although the relation (9) is self-evident, the question arises if every 
possible sN-2e K ( G ) c  s~-2 can be derived from a sN e S~=-K(G) .  It is easy 
to prove this by taking a suspect sN_2 e / ~ ( G )  and placing an additional subgraph 
K2(Vl, v2) over the adjacent vertices V(G2)={vl, v2}. Now, if the graph sN_2w 
K2(vl, v2) =- sN E S~, it means that the graph s~r_2 can be derived from the graph 
sN by substituting the appropr ia te / (2  subgraph by two discrete vertices vl and 
v2. If, however, the graph sN_2w K2(vl, v2)~ S~  (i.e. it does not form a valid 
Kekul6 structure), it means that the ( N / 2 - 1 ) K 2  components of sN-2 do not 
form a valid Sachs graph on N - 2  vertices, i.e. obviously the tested sN-2 ~t S~_2 
to begin with. 

Equation (4) gives a new insight into the meaning of the coefficients of the acyclic 
polynomial. Namely, while ]a~[ is the number of Kekul6 structures (of course, 
if N is odd, a ~  = 0), ]a~_l] is the number of radical (or cation) structures (again, 
if N even, a ~ - i  = 0), 1a74-21 is the number of biradical (or bication) structures, 
[a~_3l is the number of triradical (or trication) structures, [a~_4t is the number 
of tetraradical (or tetracation) structures, etc., while [a~ c] is the number of 
( N  - 2)-radicals (or ( N  - 2) -cations; or, alternatively, the number of bonds) and 
l agCl is the number of N-radicals (or N-cations; i.e. the number of discrete graphs 
over N vertices, which is always equal to 1). 

There are some interesting implications, as well. Consider a graph G (with N 
even) the acyclic polynomial of which has a property a ~  = 0. Such a graph has 
no Kekul6 structures. However, if a ~_  2 r 0, it means that the structures of the 
highest order that can be written for such a graph are of the biradical type. Thus, 
such a graph belongs to the family of proper biradicals [26, 27]. Furthermore, all 
the biradical structures of such a graph belong to the set of Dewar structures 
(because of expression (11)). Therefore, one can define a proper biradical as a 
graph with a ~  = 0 but a ~ _ 2 ~  0, or, alternatively, as a graph the highest Order 
structures of  which are Dewar structures. If, however, both a ~  = 0 and a ~ _  2 = 0, 
but a ~ - 4 r  0, we can talk of a proper tetraradical etc. If N is odd, and a ~ _  1 ~ 0 
(which is true for most cases), we are dealing with a proper radical; if however, 
a~_~ = 0, but a~_3 ~ 0, we have the case of a proper triradical, etc. 

3. Discussion 

Let us now test the forwarded expressions on the examples outlined in the 
beginning. The needed acyclic polynomials can be obtained through one of the 
available computer programs [28], or one can use the recursive formula [22, 23] 

P"C( G; x)= P a t ( G - e ;  x ) -  PaC( G - (  e); x) 

For the case 1 (cyclopentadienyl radical) the acyclic polynomial is 

P~c(1; x )=xS-5x3+5x .  

Obviously, being an odd-membered ring, I does not have any Kekul~ structures. 
From (4) we have SC[ 1(1, 0)] = l agCl = 5, i.e. there are five distinct monoradical 



112 B. Ru~i6 ,  N. Trinajsti6 and P. Ki'ivka 

structures. Of course, because of SC[1(2, 0)] = l a~Cl = 5 there are five triradical 
structures, too (Fig. 2). 

The acyclic polynomial of 2 (acepentylene) is 

PaC(2; x) = x 1~ - 12x 8 + 39x 6 - 7 5 X 4 " ~  39x 2 -  3. 

Acepentylene has 3 Kekul6 structures: SC[2(0, 0)] = laT~l -- 3. From (4) we have 
SC[2(2, 0)] = la~l = 3 9 =  SC[2(0, 2)], i.e. there are 39 biradical structures and 
39 bication structures. These will yield 78 radical-cation structures, because of 
SC[2(1, 1)] 2 ~ = (1)lab 1=78 (Fig. 3), etc. 

It is of special interest to find the number of biradical structures where the vertices 
of G2 are non-adjacent, i.e. the number of  Dewar structures. From (11) it turns 
out that I D(G)I  = l a~Cl - N/2I  a ~1 = 24. Therefore, out of 39 biradical structures, 
there are 15 structures where the vertices of G2 are adjacent (and consequently 
can be derived from Kekul6 structures) and 24 structures where the vertices o f  
G2 are nonadjacent and cannot be derived from Kekul6 structures (see Fig. 3). 

A word of  caution regarding D(G) ' s  is due at this point. Such structures were 
originally meant as "canonical first excited structures" with one "ineffective" (or 
"long") bond, which are important in the quantum mechanical treatment of 
conjugated hydrocarbons [29]. According to the original recipe [30] the orbitals 
(i.e. the nodes of  graph G) " . . .  are arranged formally in a circle or polygon, and 
all structures are drawn in which each bond lies wholly within the figure, and in 
which no two bonds intersect . . . ;  a structure in which one bond is 'ineffective' 
is called 'first exc i t ed ' . . . " .  Let's add parenthetically that the tr-skeleton is not 
drawn during this procedure, i.e. only the ~- superstructure is considered. 
However, as Wheland himself admits [30] " . . .  there is some arbitrariness in this 
[procedure] since in general the final result will depend upon the way in which 
the initial ordering is carried out". 

Q-" O S 

O 

O / 
� 9  �9 
6(1 ,0)  s~ 6(3,0) s 2 

Fig. 2. The monoradical  G O , 0 )  and triradical G(3, 0) 
structures of  cyclopentadienyl radical and the related 
Sachs graphs s 4 and s 2 
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Fig. 3. The Kekul6 G(0, 0), biradical G(2, 0) and radical-cation structures G(1, 1) of  acepentylene 
together with the related Sachs graphs Slo and s 8. Out of  39 biradical structures, 15 structures can 
be derived from the Kekul6 structures. The remaining 24 structures form the set of  Dewar structures. 
Each biradical structure generates two radical-cation structures 
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Fig. 3----(continued) 

B. Rug~i6, N. Trinajsti6 and P. t(2ivka 

The present procedure of obtaining I D(G)[ counts all structures where [G2I = 2 
and V(G2) are non-adjacent, and therefore includes all "canonical first excited 
structures", together with the structures where the "ineffective" bond intersects 
one (or more) "effective" bonds (i.e. components of the Sachs graph). It is easy 
to show that the latter cannot happen (when first excited structures are considered) 
for straight chains and mono- or polycyclic structures containing only even- 
membered cycles. However, bond intersection may happen in polycyclic structures 
with odd-membered rings. A good example of this is azulene 

3 
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G (2,0] D (G) s8 G (I,1) 
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Fig. 3--(continued) 

The acyclic polynomial of azulene is 

Pat(3; x) = x 1~ l l x S + 4 1 x 6 - 6 1 x 4 +  3 1 x : - 2 .  

From (11) we obtain [D(G)I =21. All 21 structures are shown in Figs. 4b, c. 
However, the edge that fuses the 5-membered ring and the 7-membered ring of 
azulene corresponds to an essential single bond (i.e. a bond that is single in all 
Kekul6 structures, Fig. 4a). This bond becomes a double bond in six Dewar 
structures (Fig. 4c). It is exactly these six structures that do not conform to the 
somewhat vague definition of "canonical first excited structures" because the 
"long bond"  crossing from the 5-membered ring to the 7-membered ring intersects 
the K2 edge covering the essential single bond. Obviously, the "canonical first 
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b} 

c) 

cQ cO 
Fig. 4. Unexcited and excited structures of 
azulene. The a r r o w  points to the essential 
single bond in Kekul6 structures (a). The 
Dewar structures in (b) conform to the 
definition of "canonical first excited struc- 
tures", those in (c) do not conform to the 
definition because the essential single bond 
becomes "effective" and intersects the 
"ineffective" bond 

excited structures" of azulene can be counted by leaving out the essential single 
bond, i.e. considering cyclodecapentaene 

4 

The acyclic polynomial of cyclodecapentaene is 

Pat(4; x) = x a~ lOxS + 35x6-  50xa + 25x2-  2. 

From (11) we obtain ID(G)I = 15, which is the correct number of "canonical first 
excited structures" for both 3 and 4. Unfortunately, the ultimate reference to the 
number of "canonical first excited structures", the Wheland polynomial [30-33], 
cannot be constructed for azulene by the usual prescriptions, so that the mismatch 
between ID(G)I and the number of "canonical first excited structures" may be 
beside the point. 
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